An iterated local search algorithm for the minimum differential dispersion problem
نویسندگان
چکیده
Given a set of n elements separated by a pairwise distance matrix, the minimum differential dispersion problem (Min-Diff DP) aims to identify a subset ofm elements (m < n) such that the difference between the maximum sum and the minimum sum of the inter-element distances between any two chosen elements is minimized. We propose an effective iterated local search (denoted by ILS MinDiff) for Min-Diff DP. To ensure an effective exploration and exploitation of the search space, the proposed ILS MinDiff algorithm iterates through three sequential search phases: a fast descent-based neighborhood search phase to find a local optimum from a given starting solution, a local optima exploring phase to visit nearby high-quality solutions around a given local optimum, and a local optima escaping phase to move away from the current search region. Experimental results on six data sets of 190 benchmark instances demonstrate that ILS MinDiff competes favorably with the state-of-the-art algorithms by finding 130 improved best results (new upper bounds). keywords: Combinatorial optimization; dispersion problems; heuristics; iterated local search; three phase search.
منابع مشابه
Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem
An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...
متن کاملSolving multi-objective team orienteering problem with time windows using adjustment iterated local search
One of the problems tourism faces is how to make itineraries more effective and efficient. This research has solved the routing problem with the objective of maximizing the score and minimizing the time needed for the tourist’s itinerary. Maximizing the score means collecting a maximum of various kinds of score from each destination that is visited. The profits differ according to whether those...
متن کاملController Placement in Software Defined Network using Iterated Local Search
Software defined network is a new computer network architecture who separates controller and data layer in network devices such as switches and routers. By the emerge of software defined networks, a class of location problems, called controller placement problem, has attracted much more research attention. The task in the problem is to simultaneously find optimal number and location of controll...
متن کاملMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملA novel local search method for microaggregation
In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 125 شماره
صفحات -
تاریخ انتشار 2017